DETERMINING THE CAUSES OF CHILD ROAD DEATHS AND INJURIES IN LEBANON
TABLE OF CONTENTS

4 ACRONYMS AND ABBREVIATIONS
5 TABLES
5 FIGURES
6 EXECUTIVE SUMMARY
6 STUDY RESULTS
7 INTRODUCTION
9 METHODOLOGY
9 STUDY DESIGN AND SAMPLING STRATEGY
9 HOSPITAL SELECTION
10 DATA COLLECTION FORM
10 DATA COLLECTION PROCESS AND STATISTICAL ANALYSES
11 DATA CLEANING AND ANALYSIS
12 RESULTS
24 DISCUSSION
25 CONCLUSION AND RECOMMENDATIONS
28 REFERENCES
29 APPENDIX A
29 TIMELINE
30 APPENDIX B
30 LIST OF SELECTED HOSPITALS
ACRONYMS AND ABBREVIATIONS

ATV All-Terrain Vehicle
AUB American University of Beirut
AUBMC American University of Beirut Medical Center
AVP Accident Voie Publique
CHIRPP Canadian Hospitals Injury Reporting and Prevention Programs
CITI Collaborative Institutional Training Initiative
ED Emergency Department
EMR Eastern Mediterranean Region
HIC High Income Countries
ICD International Classification of Disease
IRB Institutional Review Board
ISF Internal Security Forces
LMIC Low and Middle-Income Country
MENA Middle East and North Africa
MVA Motor Vehicle Accident
RTI Road Traffic Injuries
SDG Sustainable Development Goal
TBI Traumatic Brain Injury
TEC Traffic Emergency Committee
UNHCR United Nations High Commissioner for Refugees
WHO World Health Organization

TABLES

Table 1. Distribution of male and female road victims by transportation mode
Table 2. Distribution of injuries by mode of transport across age groups
Table 3. Distribution of road victims among nationalities
Table 4. Seasonal variation of RTI
Table 5. Distribution of risk factors across regions in Lebanon
Table 6. Distribution of risk factors among age groups <5, 6-14 and 15-17
Table 7. Distribution of risk factors by gender

FIGURES

Figure 1. Gender and nationality distribution of road victims
Figure 2. Distribution of road victims between boys and girls
Figure 3. Distribution of injuries across age groups <5, 6-14 and 15-17
Figure 4. Distribution of injuries and deaths across all ages by transportation mode
Figure 5. Age distribution and mode of transport for all age groups
Figure 6. Distribution of mode of transport
Figure 7. Distribution of RTI by mode of transport within each age group
Figure 8. Distribution of mode of transport by nationality
Figure 9. Distribution of all nationalities by mode of transport
Figure 10. Nationality distribution across the governorates
Figure 11. Transport mode and nationality distribution across the governorates
Figure 12. Distribution of road types and road users
Figure 13. Distribution of fatalities among road types
Figure 14. Distribution of contributing crash factors
Figure 15. Distribution of contributing crash factors among governorates
Figure 16. Distribution of contributing crash factors among age groups
Figure 17. Distribution of injury types
Figure 18. Fatalities by mode of transport
Figure 19. Distribution of fatalities among age groups <5, 6-14 and 15-17
EXECUTIVE SUMMARY

Road traffic injury (RTI) constitutes the leading cause of death and disability for individuals aged 5-29.1,3 Globally, road traffic injuries claimed the lives of 1.35 million people in 2016 with 50 million more injured or disabled.4 It is estimated that, without sustained action, the number of RTI deaths will increase by 2030, making road injuries the 7th leading cause of death worldwide.5

The burden of road injuries is disproportionately distributed globally with almost 90% occurring in developing countries due to the growing motorization industry coupled with a lack of road infrastructure and government safety legislation.6,7 The Eastern Mediterranean Region (EMR) suffers from high rates of road traffic fatalities and disabilities.8

Like many Eastern Mediterranean countries, Lebanon experiences high road traffic morbidity and mortality rates. According to the WHO Road Status Report 2018, the rate of road deaths in Lebanon was estimated at 18.1 per 100,000,9 with more than half of these victims below the age of 30.10,11 Road Traffic Injury is one of the leading causes of injury-related death in Lebanon, with an estimated 500 fatal injuries reported annually (almost 18% of these road injury victims suffer from permanent or long-term disabilities).12

Despite the available RTI data in Lebanon, underreporting of deaths and injuries caused by road crashes is a major concern that hinders the accurate assessment of the nation’s RTI burden. However, the severity of the RTI injury burden is a major national health problem.

This report integrates data from multiple sources to highlight the alarming number of child RTI deaths and injuries on the roads in Lebanon. Save the Children commissioned this research study with the support of the PIA Foundation to shed light on the most common causes of child road injuries and deaths in Lebanon, with the aim of highlighting the severity of child RTI and understanding its characteristics and associated risk factors. This report quantifies child road injuries and deaths in Lebanon for the period of 2015-2017. Additionally, it identifies child RTI seasonal trends and patterns and examines victims’ demographics, most common injuries and geographic distribution across six Lebanese governorates.

STUDY RESULTS

A newly designed child injury surveillance form was adopted to capture injury variables. Multiple sources of data were examined to comprehensively assess the burden of child road injuries. An estimated 3,270 cases of child road injuries and deaths were captured from police reports and retrospective hospital patient records through a review of 30 emergency departments across Lebanon for injured patients during the period of time from 2015 to 2017.

Findings from this study reveal that the vast majority of RTI victims are male (72.5%) compared to female (27.5%). Children aged 6-14 had the highest share of road injuries (45.2%) compared to children under five years of age (18.8%) and those between 15-17 (34.8%). Vulnerable road users (pedestrians, motorcyclists, cyclists) encompassed nearly half of the child RTI cases (47%); 66.5% of the cases were Lebanese, 27.9% were Syrian and 2.4% were Palestinian. Mount Lebanon, Bekaa/Baalbeck-Hermel and North Lebanon/Akkar were the regions with the greatest numbers of RTI. A significant proportion (38.3%) of the RTI occurred on two-way roads that are not physically divided, 15.8% of RTI occurred on side streets and 12.2% occurred on highways. The most common reported factors contributing to RTI were speed (25%), distracted/careless driver (20%) and (for pedestrians) carelessness while crossing the road (14%). Summer months witnessed more RTI compared to the other seasons. The study results show a substantially high proportion of child pedestrians suffering from morbidity and mortality associated with RTI noticeably high proportion of Syrian victims were pedestrians (51.7%), in contrast with other nationalities. The overall share of road traffic injury morbidity and mortality experienced by children increases with age, especially among children aged 15 (9%), 16 (11%) and 17 (14%). Nevertheless, children aged 0-5 suffer the highest proportion of fatal injuries compared to other age groups.

This study concludes with four primary recommendations:

1. Ensure proper injury coding in hospitals and establish a national injury surveillance system.
2. Enforce road safety laws, particularly those intended to protect children.
3. Implement evidence-based road safety policies and behavioral change programs.
4. Invest in safer road infrastructure.

INTRODUCTION

Road Traffic Injury (RTI) represents a major global public health problem, claiming millions of lives. Road injuries are the leading cause of morbidity and mortality globally, particularly for those aged 5-29 years, highlighting the high burden RTI places on individuals, societies and economies. RTI causes significant physical and psychological strain to those injured and their families as many of the injured children and young adults are left with permanent and long-term disabilities.13 Additionally, the cost and economic consequences of RTI are substantial. It is estimated that the direct and indirect costs of RTI consume between 1% and 3% of the global national products of world governments.14,15 with a significant toll on Low and Middle-Income Countries (LMICs) in which young adults are among the primary wage-earning groups. The international community acknowledged the importance of implementing evidence-based interventions to reducing the number and impact of road injuries.16

In September 2015, the UN General Assembly adopted the historic Sustainable Development Goals (SDGs). One of the SDG targets (3.6) is to achieve a 50% reduction in the global number of road traffic deaths and injuries by 2020.17 Consequently, to prevent and reduce the impact of RTI, the “World report on road traffic injury prevention” made six recommendations.16 These include (1) identifying a lead agency in the government to guide national road safety efforts and assess the problems, policies and institutional capacities for road traffic injury prevention; (2) preparing a national road safety strategy and plan; (3) allocating the necessary financial and human resources; (4) implementing and evaluating actions to prevent and minimize RTI and (5) developing national capacity and international cooperation.16,18,19,20

LMICs bear the heaviest toll of road deaths and injuries in the world.14 The burden of road traffic deaths remains disproportionately high among LMICs, with an estimated RTI death rate of 27.5 per 100,000, almost three times that of High Income Countries (HICs).1 A substantial proportion of these RTIs occur in low-income countries despite the fact that only 1% of world’s motor vehicles are found in these countries.1 Globally, Africa and South-East Asia have the highest rates of RTI deaths.1 The lack of preventive safety measures and adequate health care facilities increases the number and severity of road injuries in LMICs. Children are particularly vulnerable road users and the Middle East and North Africa (MENA) region suffers one of the highest child RTI fatality rates.1

In Lebanon, Road Traffic Injury is a major, yet neglected public health issue. According to the WHO Road Status Report 2018, the rate of road deaths in Lebanon is estimated at 18.1 per 100,000 population.21 The Global Burden of Disease 2017 reported that child road traffic deaths in Lebanon represent the sixth leading cause of death in Lebanon for those aged below 20, exceeding major non-communicable and infectious diseases.21 Lebanon’s history of conflict influenced the national health agenda and shifted the allocation of significant health resources to care for war injuries. Protracted conflict drained the nation’s health care resources and diverted attention from preventable injuries. The limited literature on injury in Lebanon primarily documents the prevalence of various types of injuries (e.g. war injuries, falls, burns, road crashes and poisoning) with minimal translation of research into evidence-based injury prevention policies, programs and solutions to reduce the injury burden in the country.22 More recently, the Syrian conflict and its resultant in the arrival of nearly 1.5 million refugees, approximately half of whom are children and youth. These refugees are particularly susceptible to various types of injuries including road traffic injuries due to their reliance on transportation infrastructure, poor living conditions, and hazardous work environments.

Currently, Lebanon lacks a national injury surveillance system and, consequently, accurate and reliable RTI data are absent or non-representative. Road-related injuries and deaths are collected by the Traffic Emergency Committee (TEC) and serve mainly for judicial and insurance purposes. Collecting TEC data are limited to reporting severe road crashes and non-fatal injuries.23,24,25

SAVE THE CHILDREN LEBANON
Determining the Causes of Child Road Deaths and Injuries in Lebanon - May 2019

MENA

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
crashes resulting in fatalities captured by police reports or the Lebanese Red Cross at the crash site. Nevertheless, existing road crash reports and unpublished government data show a steady upward trajectory in the number of RTI. Data from the Lebanese Directorate General of the Internal Security Forces (ISF) show that in 2015, the number of RTIs reached 576 deaths and 5,658 injured, with over three-quarters of all victims being male (ISF Unpublished data). The number of premature deaths due to RTI has been increasing dramatically every year since 2000, with the highest number of road fatalities reported among drivers aged between 15-44, who account for 70% of the total RTI injuries and 53% of the total number of RTI fatalities in Lebanon.

An analysis of ISF data in 2011 showed that about half of road traffic crash victims were under 30 years of age.10 Pedestrians were involved in almost 29% of the crashes where as many as 47% of the crashes were multi-vehicle crashes.10 According to Kunhadi, a non-governmental organization for road safety awareness, figures show that although the total number of road traffic deaths and injuries decreased from 2015 to 2017, those for children less than 14 years old have increased substantially.10 Compared to the total deaths, the percentage of child RTI deaths has increased from 13.7% in 2015 to 21.8% and 19.5% in 2016 and 2017 respectively. Of the total number of road injuries, the percentage of child RTI has increased from 9.6% in 2015 to 20.7% and 22% in 2016 and 2017 respectively.10

The objective of this research study is to quantify the prevalence and the characteristics of road traffic injuries and deaths in Lebanon and to determine their associated risk factors. To the best of the research team’s knowledge, this is the first study to capture national retrospective child road injury data from multiple sources. The study uses an injured surveillance form to review data over a three-year period, from 2015 to 2017. The outcome of this study will increase public understanding of the impact of road traffic injuries on children and youth in terms of the number of children injured, victim demographics, characteristics and geographic distribution of child injuries, the causes and types of RTI presented to Emergency Departments, child RTI hospitalization and emergency visit rates, associated risk factors and short-term survival outcomes. Collecting primary RTI injury surveillance data at Emergency Departments across hospitals helps to accurately assess crash injury data, quantify the frequency of RTI injuries and determine the nature, circumstances, risk factors and outcomes of these types of injuries.

This study was prepared by:
Samar H. Al-Hajj, PhD, Assistant Research Professor, Health Management and Policy Department Faculties of Health Sciences American University of Beirut E: sh137@aub.edu.lb Alt: E: salhajj@alumni.harvard.edu

Research Team:
Samar Al-Hajj Khalil El Asmar Sabaou Arjijian Zahraa Hamadeh

METHODOLOGY

This study conducted a retrospective review of police reports and hospital emergency department patient records for children aged 0-17 who sustained a road traffic injury or death across Lebanon during the period from 2015 to 2017. Any child road traffic injury case meeting the following study criteria was included in the study: (1) the child is below the age of 18, (2) the child sustained a road traffic injury or death, (3) the child is a road user victim (i.e. pedestrian, driver of a moving vehicle, pedestrian, cyclist, motorcyclist or motorcycle passenger) and (4) the child was treated at an Emergency Department or admitted to any of the participating hospitals across Lebanon during the selected period. To complement hospital data, we collected data from police reports to gain deeper understanding of the circumstances surrounding road crash injury.

The study was carried out over six months, from November 2018 until April 2019. The study was approved by the American University of Beirut (AUB) Institutional Review Board (IRB) BIO-2018-0459. The AUB IRB approval was shared with the Internal Security Forces (ISF), as well as with participating hospitals’ ethical committees to ensure hospital approval to access to patients’ medical records. To protect patients’ privacy and confidentiality, an additional IRB application was needed at participating hospitals to secure ethical approval to retrieve patients’ information from Emergency Department records.

STUDY DESIGN AND SAMPLING STRATEGY

To ensure a nationally representative sample, we opted a cluster random sampling strategy to select hospitals across Lebanon. Initially, we compiled the list of 5-7 hospitals (meeting our inclusion/exclusion criteria) in each governorate (cluster). A random sampling technique was conducted to randomly select hospitals from within each cluster to be included in the study. In order to give specific weight for each area, the number of hospitals selected from each cluster was informed by two main criteria:

1. The size of the governorate.
3. The number of RTIs documented in the governorate based on existing RTI statistics provided by the ISF. For instance, based on unpublished ISF data, the Bekaa governorate reported a high incidence of road traffic deaths and injuries. Therefore, more hospitals were selected from the Bekaa region to ensure capturing of the maximum number of road victims occurring at this geographic location.

HOSPITAL SELECTION

Selected hospitals were a mix of public and private hospitals located within geographically dispersed areas throughout Lebanon across six governorates, including the regions of Beirut, Mount Lebanon, North Lebanon, South Lebanon Baalbek-Hermel and the Bekaa.

An extensive search for existing sentinel hospitals was conducted and a list of potential hospitals (location, governorate, number of pediatric beds) was prepared. The population of Lebanon was estimated at over 6.22 million in 2017. According to the Ministry of Public Health, there are 29 public hospitals, and 117 private hospitals distributed across 20 major areas including Beirut, AlShouf, Baalbek, Zahle, Bekaa, Baabda, Tripoli, Akkar, Bint Jbeil, Tyr, Marjayoun, Nabatieh, Hasbaya, Saida, Rashaya, Hermel, Baher, Kula, Metn, Keserwan, and Jbeil. The vast majority of road traffic injuries sustained by children are treated at local hospital EDs except for minor injuries that typically are treated through health services offered by local Public Health Centers. Refer to Appendix A for locations and number of cases retrieved at participating hospitals.

The research team mapped the geographic location of hospitals to support in the selection of a representative sample for this study. Criteria for sentinel hospital selection were: (1) hospital location in high population areas where occurrence of child road injuries is proportionally high, (2) hospital location in a distant geographic location relative to other selected hospitals, (3) hospital has an Emergency Department, (4) hospital willingness to collaborate and to provide cleaned child road injury related data, (5) hospital data meeting the minimum cri-
DATA COLLECTION FORM DESIGN

The research team developed and designed a new child RTI surveillance form to capture and quantify the characteristics of child road injuries and deaths presented to Emergency Departments. After an extensive review of existing international RTI data collection forms, the research team adopted the following three primary resources to develop the new RTI form: (1) The Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP) surveillance form, (2) the WHO Emergency Unit chart Trauma form and (3) The European Commission’s 2016 study on serious road traffic injuries in the European Union.

Informed by the literature, the new form was finalized and used to systematically capture primary child injury data from the hospital ED records (both paper-based and electronic) and police crash reports upon availability. The form documented all available details related to:

- Child demographics and victims involved (e.g. driver/passenger/pedestrian/cyclist).
- Crash information (e.g. cause, location, weather conditions, time, car type).
- Contributing factors (e.g. not wearing a seat belt, alcohol).
- Injury nature (e.g. fracture, concussion).
- Child body part injured (e.g. head, neck, trunk, spine).
- Injury treatment (e.g. treated in ED, admitted to hospital).
- Injury outcome (i.e. ED Treat and Release, Dead on Arrival (DOA) or died in ED/hospital).

An electronic version of the newly designed form was built on RedCap (https://www.project-redcap.org) and was pilot tested at selected hospitals. The pilot testing served to modify the form, apply the necessary revisions and finalize it accordingly.

Research assistants recruited for this study were trained on the data collection process and the use of the forms. The training explained the objectives of the study, the type of data to be collected at each hospital and the electronic extraction, categorization and collection of data on RedCap, as well as training on the importance of safeguarding the privacy and confidentiality of patients’ information. The research team underwent additional training online for biomedical research through the Collaborative Institutional Training Initiative (CITI) program and obtained their certificates prior to the onset of the data collection process.

DATA COLLECTION PROCESS AND STATISTICAL ANALYSES

The study team selected 30 sentinel hospitals dispersed across six governorates including Beirut, Mount Lebanon, North Lebanon, South Lebanon Baalbek-Hermel and the Bekaa. The research team visited each hospital to ensure that the hospital data matched the study requirements as well as to seek approval from hospital administration to participate in the study by requesting signatures on the ethical approval form. Once approved, the research team visited each hospital ED and communicated with the ED director, head nurses and Information Technology departments to retrieve patients’ files and collect retrospective RTI child injury data using the designed injury surveillance form. At each hospital, ED log sheets were scanned to identify RTI child injury cases meeting the study criteria and retrieve corresponding patient records. The research team reviewed accumulated medical records for ED injury-related visits and extracted required injury data points from patient routine diagnoses. Patient identification information was not captured. Hospitals with electronic records were occasionally coded according to the International Classification of Disease - 10th edition (ICD-10) as not all hospital had the resources to complete the coding of cases and update their records. On the other hand, hospitals with paper-based patient records lack coding systems and therefore it was challenging to locate files due to the large amount of physical data. The research team was trained to handle both types of patient records. Electronic and paper-based data were recorded using the RedCap database. RTI child injury cases resulting in ED treatment and release were captured from ED patient records, while cases resulting in hospital admission were accessed through the hospital inpatient discharge system. RTI child injuries resulting in death (upon arrival or shortly after presenting to ED) were also collected. To eliminate the possibility of duplicate cases, those reported in ED and hospitalization records were considered as a single injury case with the highest severity of outcome documented.

Police reports, originally in Arabic, were translated to English and relevant variables were extracted into the RedCap data collection form. Police data included limited information on the physical nature of injuries, but nevertheless provided information on the circumstances of the injuries, road types, surface conditions and, in some cases, reported safety measures reportedly adopted by road victims.

Data collected from multiple sources, including patient medical records and police road crash reports, were compiled into a single comprehensive child road injury database.

DATA CLEANING AND ANALYSIS

Data was cleaned and compiled by removing missing and incomplete injury forms. De-identified data were entered electronically into a secure password-protect-
RESULTS

The research team collected 3317 cases of children who sustained road injuries, including those resulting in death, during the period between January 2015 and December 2017. These cases were retrieved from the Emergency Department patient records of 30 selected hospitals along with data retrieved from police crash reports. After removing 47 duplicate cases, the remaining number was 3270 cases of children (0-17) with road injuries or deaths.

Across all ages and nationalities, most of the child road injury cases were males. Approximately 72% of the total number of children were boys and 28% were girls. The mean age was 11 (Standard Deviation ±5). As for nationalities, 66.6% of the cases were Lebanese, 27.9% were Syrian and 2.5% were Palestinian (Figure 1). The gender distribution was uniform across all nationalities.

The research team investigated the distribution of road victims between boys and girls. Compared to girls, male road victims reported a higher proportion of injuries across all modes of transportation. Compared to girls, male road victims reported higher rates of injuries related to the adopted mode of transportation. Male victims were mostly pedestrians (23.8%), 4-wheeled vehicle occupants (18.9%) and motorcyclists (15.1%), whereas female victims were mostly 4-wheeled vehicle occupants (11.6%) (Figure 2).

Both female and male pedestrian road victims were substantial, with 31.4% and 32.8% respectively. Boys are at a higher risk of sustaining motorcycle-related injuries (18.6%) compared to girls (2.9%) (Table 1).

The research team grouped age into three categories: <5, 6-14 and 15-17. As depicted in Figure 3, children aged 6-14 had the highest share of road injuries (45.3%) compared to those aged 0-5 (18.9%) and 15-17 (34.8%).

Road traffic injury morbidity and mortality increase as children age, with significantly higher proportions among children aged 15 (9%), 16 (11%) and 17 (14%). The analysis clearly indicated that until the age of 12, the majority of the RTI cases involved 4-wheel vehicle occupants or motorcyclists. However, starting at the age of 14, motorcycle-related injuries significantly increased, peaking at the age of 17 (Figure 4).

The research team grouped age into three categories: <5, 6-14 and 15-17. As depicted in Figure 3, children aged 6-14 had the highest share of road injuries (45.3%) compared to those aged 0-5 (18.9%) and 15-17 (34.8%).

Road traffic injury morbidity and mortality increase as children age, with significantly higher proportions among children aged 15 (9%), 16 (11%) and 17 (14%). The analysis clearly indicated that until the age of 12, the majority of the RTI cases involved 4-wheel vehicle occupants or motorcyclists. However, starting at the age of 14, motorcycle-related injuries significantly increased, peaking at the age of 17 (Figure 4).

The research team grouped age into three categories: <5, 6-14 and 15-17. As depicted in Figure 3, children aged 6-14 had the highest share of road injuries (45.3%) compared to those aged 0-5 (18.9%) and 15-17 (34.8%).

Road traffic injury morbidity and mortality increase as children age, with significantly higher proportions among children aged 15 (9%), 16 (11%) and 17 (14%). The analysis clearly indicated that until the age of 12, the majority of the RTI cases involved 4-wheel vehicle occupants or motorcyclists. However, starting at the age of 14, motorcycle-related injuries significantly increased, peaking at the age of 17 (Figure 4).

The research team grouped age into three categories: <5, 6-14 and 15-17. As depicted in Figure 3, children aged 6-14 had the highest share of road injuries (45.3%) compared to those aged 0-5 (18.9%) and 15-17 (34.8%).

Road traffic injury morbidity and mortality increase as children age, with significantly higher proportions among children aged 15 (9%), 16 (11%) and 17 (14%). The analysis clearly indicated that until the age of 12, the majority of the RTI cases involved 4-wheel vehicle occupants or motorcyclists. However, starting at the age of 14, motorcycle-related injuries significantly increased, peaking at the age of 17 (Figure 4).
As shown in Figure 5, children aged 6-14 reported the highest proportion of pedestrian road victims (17.7%) compared to younger and older age groups. The age group 15-17 suffered from a high proportion of motorcycle injuries (9.2%) compared to children aged 6-14 (4.4%) and <5 (0.7%).

Vulnerable road users (pedestrians, motorcyclists, cyclists) constitute the majority of RTI cases (48.1%). Pedestrians represent the highest proportion of child road victims (32.4%), followed by 4-wheeled vehicle occupants (30.5%), motorcyclists (14.3%) and bicyclists (1.4%) (Figure 6).

Within each age group, the distribution of road injuries varies substantially (Figure 7). Younger age groups are more susceptible to being victims as pedestrians (39.6%) while the oldest age group comprises more victims of 4-wheel vehicles (31.7%) and motorcycle (26.3%) crashes (Table 2).

Nationality distribution differed among RTI victims (Table 3). Lebanese were the majority among 4-wheeled vehicle occupants. However, within the pedestrians group, Syrians were the most affected population. Among the motorcyclists, the distribution was roughly equal among the Lebanese, Syrians and Palestinians population (Figure 9).

![Figure 5 - Age distribution and mode of transport for all age groups](image-url)

![Figure 6 - Distribution of mode of transport](image-url)

![Figure 7 - Distribution of RTI by mode of transport within each age group](image-url)

![Table 2 - Distribution of injuries by mode of transport across age groups](image-url)

![Table 3 - Nationality distribution among RTI victims](image-url)
Child RTI cases were geographically scattered across all governorates in Lebanon with the highest proportion of cases reported in the Bekaa/Baalbeck-Hermel, North Lebanon/Akkar and Mount Lebanon regions (Figure 10). Of the nationalities, Lebanese represented the majority of road victims in all the governorates except for the Bekaa region, where a marginally higher proportion of Syrian children sustained road injury (7.1%) compared to Lebanese (6.9%) and other nationalities.

The highest proportion of 4-wheel vehicle victims was reported in the Mont Lebanon Region (7.1%) followed by Baalbeck-Hermel (6.1%), while the highest proportion of pedestrian victims were found in Bekaa (4.5%) followed by Mount Lebanon (4.4%) (Figure 11).

Throughout the three-year study period, the patterns of child injuries changed across seasons with a significant peak in the summer months (32.5%), followed by spring (24.2%), fall (23.7%) and winter (19.5%) (Table 4).
A significant portion (50.6%) of RTI sustained by children occurred on two-way roads that are not physically divided. 18.8% of RTI occurred on side streets and 13% occurred on highways. Weather conditions were not a conclusive factor in increasing risk of injury, as 55.4% of documented injury cases happened on dry surface conditions. 4-wheeled vehicle occupants comprised the majority of victims on highways and two-way unseparated roads, followed by motorcyclists. On side streets, however, the numbers of motorcyclists and pedestrians were relatively higher when compared to other types of roads (Figure 12).

Most of the fatalities occurred when the RTI occurred on two-way roads that are not physically divided, followed by highways (19.9%) and side streets (19.2%) (Figure 13).

The most common reported factors contributing to RTI were speed (25%), distracted/careless driver (20%), and (for pedestrians) carelessness while crossing the road (14%) (Figure 14). Detailed information on the number and percentage of these multiple contributing factors are enlisted in Table 5. As noted, these factors were differently distributed among the regions. All three of these factors were reported to be more commonly associated with injuries occurring in Mount Lebanon and Bekaa, with the difference being statistically significant (Figure 15).

Figure 12 - Distribution of RTI by road type and road user

Figure 13 - Distribution of fatalities among road types

Figure 14 - Distribution of contributing crash factors

Table 5 - Distribution of risk factors across regions in Lebanon

Table 6 - Distribution of risk factors among age groups 0-17

The distribution of these contributing factors among age groups is documented in Table 6.
Table 7 presents the factors affecting boys and girls and increasing their risks of being road victims.

<table>
<thead>
<tr>
<th>DISTRACTED DRIVER</th>
<th>SPEED</th>
<th>PEDESTRIAN CARELESS WHILE CROSSING THE ROAD</th>
<th>LOST CONTROL</th>
<th>WRONGFUL OVERTAKING</th>
<th>OTHER FACTORS</th>
<th>TOTAL NUMBER OF CASES PER GENDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>FEMALE</td>
<td>20%</td>
<td>176</td>
<td>27%</td>
<td>237</td>
<td>13%</td>
<td>120</td>
</tr>
<tr>
<td>MALE</td>
<td>20%</td>
<td>464</td>
<td>24%</td>
<td>552</td>
<td>14%</td>
<td>319</td>
</tr>
</tbody>
</table>

Table 7 - Distribution of risk factors by gender

Speed was reported to be the most common factor for RTI in children in all age groups, followed by the “distracted/careless driver” factor. Children in the oldest age group (15-17) were more likely to suffer RTI related to speed and distracted/careless drivers, compared to RTI related to careless pedestrians. (Chi-squared test=41.9734, P-value <0.001) (Figure 16). There was no statistical difference between boys and girls with regards to these reported risk factors.

Figure 15 - Distribution of contributing crash factors among governorates

Figure 16 - Distribution of contributing crash factors among age groups
The nature and type of injuries were not uniformly reported across hospital and police data. Superficial injuries were reported to be 23% in police reports. In hospital data, the most common types of injuries over the three years were the following: superficial injuries including bruises and abrasions (36%), bone fractures (23%) and open wounds, including minor cuts and lacerations (18%) (Figure 17).

Regarding injury location, head and neck injuries were the most common nature of injury with 15% of the cases. The most common types of injuries were hip and leg injuries (11.02%), followed by the trunk injuries (thorax, abdomen, pelvis, perineum and groin) (7.3%) and shoulder/arm (6.1%).

DEATHS

There were 237 fatalities reported in the study sample, 171 males (72%) and 66 females (28%). Fatal cases constitute (7.3%) of the total number of collected child road injury cases. Within each of the gender category, 7.3% of males who sustained a road injury died compared to 7.2% of the females. There was no statistical difference in death between males and females (chi-squared test= 0.0072, P-value=0.93).

The 6-14-year age group experienced the highest proportion of fatalities (42.3%). They were followed by those aged 0-5 years (31.4%) and 15-17 years (26.2%). The difference was statistically significant (chi-squared test= 26.4997, P-value <0.001) (Figure 19).

In order to study the effects of many variables simultaneously on the outcome and severity of child RTI, two logistic regression models were carried out. The first model explored death as an outcome and the second model investigated head and neck injury as an outcome. We selected head and neck injury for its potential to lead to long-term consequences and permanent disability for children. Logistic regression analyses showed that, while adjusting for all the other variables in the model, child pedestrians have lower odds of suffering from head and neck injuries (OR = 0.5, 95% CI 0.34, 0.74). Although the incidence of road injury is higher among males, female RTI victims have higher odds of suffering from head and neck injuries (OR = 1.28, 95% CI 1.01, 1.63). Older age groups have lower odds of sustaining head and neck injuries: [6-14] (OR = 0.69, 95% CI 0.52, 0.82), [15-17] (OR = 0.56, 95% CI 0.41, 0.76) compared to the youngest age group [0-5].

Despite the fact that the legal driving age in Lebanon is 18, the research team uncovered 140 cases in which children themselves were driving 4-wheel vehicles, and 313 cases of children driving motorcycles. Data analysis revealed that children as young as 12 years of age were involved in road crashes as 4-wheel vehicle drivers and as motorcycle riders, increasing their risk of sustaining fatal injuries – 16.4% of young 4-wheel vehicle drivers and 6.4% of young motorcyclists died. The proportion of child drivers increased with age. The vast majority of underage driver victims are male (88.9% of 4-wheel vehicle drivers and 99.8% of motorcycle riders), increasing their risk of sustaining fatal injuries – 16.4% of young 4-wheel vehicle drivers and 6.4% of young motorcyclists died. The proportion of child drivers increased with age. The vast majority of underage driver victims are male (88.9% of 4-wheel vehicle drivers and 99.8% of motorcycle riders). Rural and urban locations alike witness high proportions of underage drivers, with an elevated number of young 4-wheel vehicle drivers in Baalbek, Mount Lebanon and the South. Underage motorcyclists were more common in the South and Mount Lebanon.

MULTIVARIATE ANALYSES

Based on the analysis, child pedestrians have higher odds of sustaining fatal injury compared to occupants of 4-wheel vehicles (OR = 1.6, 95% CI 1.17, 2.27). Older age groups have lower odds of dying as a result of road injuries: [6-14] (OR = 0.53, 95% CI 0.39, 0.74), [15-17] (OR = 0.51, 95% CI 0.35, 0.75). Syrian children have higher odds of dying as a result of road injuries compared to Lebanese children (OR = 2.4, 95% CI 1.83, 3.27). There were no statistically differences in the death as an outcome for gender and the seasons.
This study reveals the significant burden of child road traffic injuries and deaths in Lebanon. Boys suffer the heaviest toll with the highest proportion (72%) of the total number of road victims. As with international studies, our results showed that boys were the majority of RTI victims across all ages.13 Mount Lebanon, Bekaa/Beqaa/Hermel and North Lebanon/Akkar were the regions with the greatest number of RTI. The main contributing risk factors for RTIs were speed and distraction/carelessness. Head/neck and lower extremity injuries were the most commonly reported. Most injuries were superficial, followed by fractures and wounds. The number of RTI cases increased with age, however, those aged 0-5 had the highest number of fatalities, while the 15–17 age group sustained the highest proportion of injuries. Children aged 15-17 displayed a peak in road injury morbidity and mortality. Starting at the age of 14, there is a significant increase in the number of motorcycle victims, peaking at 16 and 17. This may be explained by the tendency for young men to take risks on the roads and to drive motorcycles and motor vehicles.13

This study’s findings align with other existing study results and reveal that the majority of road traffic injuries and deaths are among vulnerable road users, mainly pedestrians, cyclists and motorcyclists.12,13,14,15,16 Pedestrians and cyclists constitute 42% of all road injuries and deaths compared to 30% sustained by users of motorized 4-wheelers. Pedestrians suffer the highest proportion of road deaths, with 13% of pedestrian victims dying; this was almost double compared to occupants of 4- and 4-wheelers (6%).

There are many risk factors that increase the likelihood of sustaining RTI in the general population.16 It is essential to understand the risk factors faced by road users, specifically those affecting children, in an attempt to plan interventions and programs targeting the reduction of injuries and deaths resulting from RTI. Based on the study analysis, child age and road type were the two main factors associated with the nature and severity of RTI in children and youth.13 The highest proportion of road fatalities was borne by the 6-14 age group, with almost 42% of the total number of child deaths. Nevertheless, it is worth noting that the youngest age group (0-5) suffered from the most fatal injuries; almost 12% of those children who sustained a road injury died, almost twice the percentage of deaths reported in older age groups. The increased death risk and injury severity in the younger population may principally be linked to this age group’s lack of physical tolerance to high-impact crashes, especially when child restraints and seatbelts are not utilized.

In the older groups’ cases, these facts are more related to developmental, gender and environmental factors.13 Developmental factors relate to child physical development and limitations in their abilities to perceive risks and take preventive actions (limitations of size, hearing, vision, attention and judgment).18 In older populations, these factors include behavioral issues such as risk-taking, peer and social pressure and lack of driving experience.13

In many countries, the design and planning of roads and transport systems has not given enough consideration to the needs of all road users. Road infrastructure plays a significant role in increasing children’s risk of RTI. The study findings reveal that a significant proportion (30.3%) of the RTIs and most deaths-on-arrival to hospitals occurred on roads with two-way traffic that are not physically divided. Furthermore, the number of RTI for pedestrians and motorcyclists increased on side streets relative to other types of roads.

Our study showed that the most commonly reported contributing factors associated with RTI are speed and distraction/carelessness of road users. According to the literature, there are many risk factors that are elevated among children and young road users.12,13,15 These include: (1) factors influencing exposure to risk such as a mixture of high-speed motorized traffic with vulnerable road users, (2) factors influencing crash involvement such as speed, gender and road design, (3) factors influencing crash severity such as excessive speed and use of helmets or seat belts and (4) factors influencing post-crash outcomes such as availability of emergency and health services and timely clinical intervention.

Similar to road injury studies conducted in other countries, this study shows that injuries (fractures, abrasions, lacerations and contusions) to the head and neck and extremities are the most common type of injury sustained by children following a road traffic crash.13 Despite the inherent limitations of the documented hospital injuries sample, a significant proportion (5%) of child road victims presented to a hospital having sustained a traumatic brain injury (TBI), thus aligning with the international literature on the significant impact of TBIs on the severity and outcome of road traffic injuries, particularly among children.

According to the literature, lack of child restraint use is directly associated with high risk of morbidity and mortality as a result of RTI-related trauma. Based on the results of this study and the types of injuries sustained by children on the road, and with the limited available documentation of safety measures adopted by road users, the findings suggest that road users might not have been compliant with minimal safety requirements. Our study showed that children suffering severe injuries to the head and neck and extremities are likely to have suffered severe hits to the head against hard surfaces. Based on the literature, children under five are more likely to suffer from severe injuries or death if the child is unrestrained or positioned in the front seat or on an individual’s lap. In these cases, they are likely to be ejected forward upon impact or crushed between the individual’s body and the interior surface of the vehicle. The study’s regression analysis demonstrated that children between the ages of 0-5 who experience RTI are at a higher risk of suffering from head/neck injury or death.

In 2017, WHO published “Save LIVES: a road safety technical package” as part of its multisectoral support to member states to provide support to its national and international partners in technical guidance, policy planning and implementation.17 The Save LIVES package includes strategies and evidence-based interventions aimed to reduce RTI and deaths by half by focusing on: (1) Speed management, (2) Leadership, (3) Infrastructure design and improvement, (4) Vehicle safety standards, (5) Enforcement of traffic laws and (5) post-crash Survival. In order to reduce child deaths and injuries on the roads, Lebanon needs to implement a road safety strategy that comprehensively addresses all five of these areas of work.
This report calls upon government officials, policymakers, NGOs and health advocates to use this study’s findings as a basis to design and implement child injury prevention measures and programs to reduce injuries and deaths on the roads, taking into consideration the distinct ways in which children of different age groups experience RTI.

1. ENSURE PROPER INJURY CODING AND ESTABLISH NATIONAL INJURY SURVEILLANCE SYSTEM

The initial step to understanding the burden of any type of injury is to accurately document and code injury cases presented to hospital Emergency Departments. In countries like Lebanon, where some hospitals lack vital statistics and registries, existing hospital administrative and clinical data is currently used to understand the injury morbidity and mortality rate at the national level and assess the country’s injury burden. Such data sources are readily available and provide clinical and administrative data including chief complaints, outcome measures, lengths of stay and discharge diagnosis. However, the records lack accurate injury coding and documentation of essential information critically relevant to understanding the mechanism of injury. This gap limits the impact of research on injury prevention and policy. Coding and adopting the ICD-10 or any universal coding scheme is needed to help unify the classification and precise collection of injury data for effective analysis.

Similarly, the Internal Security Forces’ traffic division should adopt a standardized road safety data collection form that is harmonized with the form utilized by hospitals. The harmonized data collection form should include standard information for each patient involved in the incident, regardless of injuries sustained, including seat belt use, helmet use, use of child seat, number of occupants in the car, car mechanical issues, and airbag deployment, among others. The form should also note weather conditions and infrastructure considerations, such as nearby signage and street lighting (or lack thereof). In addition, the hospital and police data systems should be linked so that crash incidents and victim outcomes can be fully recorded and tracked, and the resulting data can be more easily analyzed and used for policy and program development.

Lebanon lacks national injury surveillance systems, which render injuries challenging to accurately measure and address. Within the context of road traffic injuries, the scarcity of injury surveillance systems results in the absence of accurate, reliable and valid road injury data. Consequently, existing injury intervention efforts are limited in scope, not evidence-based and deprioritized in policymaking. More accurate and reliable road injury data will help to reveal the extent and the magnitude of the road traffic injury as a growing public health problem in Lebanon. Integrating injury surveillance systems at the government level will help to understand the problem and to identify future policy priorities for prevention as well as to implement context-sensitive interventions to reduce injuries and mitigate their consequences.

2. ENFORCE ROAD SAFETY LAWS, PARTICULARLY THOSE INTENDED TO PROTECT CHILDREN

Lax enforcement of road safety laws exacerbates current road hazards and renders the environment adversely unsafe and risky in Lebanon, leading to a substantial increase in the number of road crashes. Over-capacity vehicles represent one major challenge to road safety, particularly among poor families. Children must always be secured using appropriate child restraints whenever they are traveling within vehicles. Motorcyclists must also adopt safety measures such as wearing helmets and refraining from transporting young children as passengers.

In Lebanon, strong traffic laws – Law 243 (Annex D) – exist, however many elements of the law are never enforced. According to the law, children under the age of 10 are prohibited from sitting in the front seat, and children under the age of 5 should be properly seated in a car seat in the backseat of the car – fines for either of these infractions are listed at LBP 450,000 ($300). Traffic police must increase enforcement of Law 243, particularly when the safety of children is at stake. Increasing enforcement of Law 243 would be the most effective way to ensure that adults protect children within vehicles. Regular, reliable enforcement could lead to sustained behavior change among parents.

3. IMPLEMENT EVIDENCE-BASED ROAD SAFETY POLICIES AND BEHAVIOR CHANGE PROGRAMS

Many countries have adopted road injury interventions and policies that have shown tremendous success in reducing road traffic injuries, a leading cause of preventable death among children and adolescents. These strategies can be contextualized to serve communities in Lebanon. Adapting data-driven injury prevention and control measures can eventually lead to a reduction in road injuries and fatalities. These measures should be guided by road safety and urban planning principles that consider ways to encourage safe behavior among pedestrians and drivers. For example, strategically installing walkways and lighting near areas of high traffic may encourage pedestrians to cross in designated areas and lead drivers to appropriately reduce their speed.

Installing low-cost road dividers (e.g. trees and plants) and roundabouts would also encourage drivers to engage in safer behavior.

Additionally, road safety behavior change programs should be initiated in schools, hospitals and communities to reduce road deaths and mitigate their impacts on children in Lebanon. There are many effective models for working directly with schools, such as creating road safety clubs and promoting road safety practices among students, teachers and parents. Any road safety programs must go beyond traditional “awareness campaigns” and focus on developing the right practices and habits that can keep both children and adults safe. Much can be done by implementing these programs along with initiating infrastructure improvements around schools, such as painting crosswalks and installing traffic calming measures.

4. INVEST IN SAFER ROAD INFRASTRUCTURE

In light of the greater number of roads connecting industrialized cities, the increased use of transportation infrastructure and the absence of government road safety enforcement, road crashes are on the rise in Lebanon. Findings from this study reveal that road type correlates with the risk of road injury, particularly among vulnerable road users (children, pedestrians and motorcyclists). The government should capitalize on increased foreign investment in infrastructure through the CEDRE conference and dedicate funds to improving road safety.

 Authorities and local municipalities are urged to collaborate and enhance the safety of local roads through the design, development and implementation of enhanced road traffic injury prevention measures (e.g. traffic calming). These include infrastructure additions to reduce vehicle speed such as roundabouts and speed bumps. These measures should also include the strategic placement of road dividers and medians in areas of higher pedestrian and vehicle traffic. This may serve to discourage unsafe driving practices, reduce vehicle speed, and encourage pedestrians to cross at designated points along the road. These investments are low-cost, but high-impact.

In addition, investment is needed to improve the visibility of road users and reduce pedestrian exposure to road traffic. Such measures would include expanding the number of pedestrian crossings, including the strategic placement of lights at such crossings. Ensuring that pedestrians are visible and cross only at designated, marked, and well-lit locations would likely reduce the high number of pedestrian injuries and fatalities.

As noted above, roads near schools should be prioritized. The International Road Assessment Program (iRAP) provides tools and assistance for assessing roadway safety. Lebanon should ensure that primary roadways are upgraded to at least “3 stars,” and to 4 or 5 stars for roads near schools.

This image contains a table with data on child fatalities by mode of transport and age group.
REFERENCES

APPENDIX A

TIMELINE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop the inception and action plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review existing RTI forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explore local and international RTI Data Collection Forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design new RTI-ED Forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot test RTI-ED Forms at selected ED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modify and Finalize the RTI/ED Form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduct Training to senior RA and RA on data collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare and Submit Phase Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select participating hospitals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Department Data collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compile Data and Verify Data Validity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Cleaning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submit Draft Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Reporting and Dissemination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare and Submit Final Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

List of Selected Hospitals

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Type</th>
<th>District</th>
<th>Governorate</th>
<th># of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMC</td>
<td>Non Governmental</td>
<td>Keserwen</td>
<td>Mount Lebanon</td>
<td>15</td>
</tr>
<tr>
<td>AUBMC</td>
<td>Non Governmental</td>
<td>Beirut</td>
<td>Beirut</td>
<td>88</td>
</tr>
<tr>
<td>Abou Jaoudah</td>
<td>Non Governmental</td>
<td>Jounyeh</td>
<td>Mount Lebanon</td>
<td>14</td>
</tr>
<tr>
<td>Hasbayya Gov</td>
<td>Governmental</td>
<td>Hasbayya</td>
<td>Bekaa</td>
<td>10</td>
</tr>
<tr>
<td>Getow</td>
<td>Non Governmental</td>
<td>Beirut</td>
<td>Beirut</td>
<td>10</td>
</tr>
<tr>
<td>CHN</td>
<td>Non Governmental</td>
<td>Tripoli</td>
<td>North</td>
<td>14</td>
</tr>
<tr>
<td>New Mazloum</td>
<td>Non Governmental</td>
<td>Tripoli</td>
<td>North</td>
<td>19</td>
</tr>
<tr>
<td>Tannourine Gov</td>
<td>Governmental</td>
<td>Barroun</td>
<td>North</td>
<td>16</td>
</tr>
<tr>
<td>Dar al Shifa</td>
<td>Non Governmental</td>
<td>Tripoli</td>
<td>North</td>
<td>21</td>
</tr>
<tr>
<td>Sacre Coeur</td>
<td>Non Governmental</td>
<td>Beirut</td>
<td>Beirut</td>
<td>33</td>
</tr>
<tr>
<td>NDU</td>
<td>Non Governmental</td>
<td>Jounyeh</td>
<td>Mount Lebanon</td>
<td>31</td>
</tr>
<tr>
<td>Hammoud</td>
<td>Non Governmental</td>
<td>Saida</td>
<td>South</td>
<td>50</td>
</tr>
<tr>
<td>Saida Gov</td>
<td>Governmental</td>
<td>Saida</td>
<td>South</td>
<td>14</td>
</tr>
<tr>
<td>Al’Yousef</td>
<td>Non Governmental</td>
<td>Akkar</td>
<td>Akkar</td>
<td>94</td>
</tr>
<tr>
<td>Al Hajkal</td>
<td>Non Governmental</td>
<td>Tripoli</td>
<td>North</td>
<td>62</td>
</tr>
<tr>
<td>Bint Jbel Gov</td>
<td>Governmental</td>
<td>Bint Jbel</td>
<td>Nabatieghe</td>
<td>11</td>
</tr>
<tr>
<td>Bahman</td>
<td>Non Governmental</td>
<td>Beirut</td>
<td>Mount Lebanon</td>
<td>68</td>
</tr>
<tr>
<td>Dar al Amal</td>
<td>Non Governmental</td>
<td>Baalbeck</td>
<td>Baalbeck-Hermel</td>
<td>82</td>
</tr>
<tr>
<td>Dar al Hikmah</td>
<td>Non Governmental</td>
<td>Baalbeck</td>
<td>Baalbeck-Hermel</td>
<td>79</td>
</tr>
<tr>
<td>Libano Francisse</td>
<td>Non Governmental</td>
<td>Zahlehe</td>
<td>Bekaa</td>
<td>72</td>
</tr>
<tr>
<td>Lebanese Italian</td>
<td>Non Governmental</td>
<td>Sour</td>
<td>South</td>
<td>60</td>
</tr>
<tr>
<td>Mouzer El Haj</td>
<td>Non Governmental</td>
<td>Chouf</td>
<td>Mount Lebanon</td>
<td>13</td>
</tr>
<tr>
<td>Khoury</td>
<td>Non Governmental</td>
<td>Zahlehe</td>
<td>Bekaa</td>
<td>13</td>
</tr>
<tr>
<td>Rashaya Gov</td>
<td>Governmental</td>
<td>Rashaya</td>
<td>Bekaa</td>
<td>7</td>
</tr>
<tr>
<td>Ragheb Harb</td>
<td>Non Governmental</td>
<td>Nabatieghe</td>
<td>Nabatieghe</td>
<td>10</td>
</tr>
<tr>
<td>Kamal Jomblat</td>
<td>Non Governmental</td>
<td>Chouf</td>
<td>Mount Lebanon</td>
<td>71</td>
</tr>
<tr>
<td>Hariri Gov</td>
<td>Governmental</td>
<td>Beirut</td>
<td>Beirut</td>
<td>20</td>
</tr>
<tr>
<td>Maritime</td>
<td>Non Governmental</td>
<td>Jbel</td>
<td>Mount Lebanon</td>
<td>20</td>
</tr>
<tr>
<td>Maounette</td>
<td>Non Governmental</td>
<td>Mat</td>
<td>Mount Lebanon</td>
<td>23</td>
</tr>
<tr>
<td>Hamed Farhat</td>
<td>Non Governmental</td>
<td>West Bekaa</td>
<td>Bekaa</td>
<td>10</td>
</tr>
</tbody>
</table>
BEIRUT COUNTRY OFFICE
Beirut, Ashrafieh
Sodeco Square, Bloc B, First Floor
T +961 (1) 614680 /1/2/4/5/6/9
lebanon.savethechildren.net

BEIRUT FIELD OFFICE
Beirut, Ashrafieh
Sodeco Square, Bloc A, Second Floor
T +961 (1) 614680 /1/2/4/5/6/9

BEKAA OFFICE
Zahle, Houch El Omara, Stargate Street, CET College Bldg, Third Floor
T +961 (8) 813117

NORTH OFFICE
Akkar, Kouwaykhat
Plot No. 356, Khaled Al Hayek Bldg.
T +961 (6) 695761